Introduction Methods Evolution

Further work

Impact of Resolution on Double-Detonation Models for Type Ia Supernovae

Fernando Rivas Department of Physics and Astronomy University of Tennessee, Knoxville

October 26, 2022

 $2022 \mathrm{ApJ} ... 937 ... 2 \mathrm{R}$

Introduction

- Methods
- Evolution
- Further work

SN Ia (2005cf)(2009ApJ...697...380W)

Formation Mechanisms

Introduction

SNIa DDet Resolution

Methods

Evolution

Name	Companion	Material
Chandrasekhar (M_{Ch})	Deg/Non-Deg	H or He
near-Chandra (nearCh)	Deg	He
Double WD (DWD)	Deg	He, C, O, Ne

Relevant Scales

SNIa DDet Resolution

Introduction

Methods

Evolution

Property Ranges	
White dwarf size/mass	$\sim 5000 {\rm km}, {\sim} 1.0 {\it M}_{\odot}$
Envelope size/mass	$\sim 2000 { m km}, \sim 0.1 M_{\odot}$
Temperatures	10^6 to 10^{10} K
Densities	10^{-2} to $10^{6}~{\rm g\cdot cm^{-3}}$
Pressures	10^{17} to $10^{27}~{\rm dyne}\cdot{\rm cm}^{-2}$
Detonation timescale	$\sim 1.0 \ { m s}$
Detonation speeds	$10^7~{\rm to}~10^9~{\rm cm\cdot s^{-1}}$
Rayleigh Number	>10 ¹¹

Codebase: FLASH

SNIa DDet Resolution

Introduction

Methods

- Evolution
- Further work

 $\tt Hydro\ PPM$ solver for the compressible Euler equations.

- EoS updates hydrodynamic or thermodynamic ones as required by Hydro and Burn, respectively (Helmholtz free-energy tables).
- Grid uses an adaptive mesh refinement (AMR) criteria to increase the resolution of the simulation where needed (2000ApJS..131..273F)
- Burn calculates burning energy release for a given network of species. 13 alpha isotope network used. (1999ApJS..124..241T)
- Gravity Poisson equation equation solver for the simulation density field via a multipole expansion, yielding an external field for the Hydro module. (8 moments)

Initial Profile

Introduction

Methods

Evolution

Introduction

Methods

Evolution

Further work

Overall Dynamics

Overall Dynamics

SNIa DDet Resolution

Methods

Evolution

Equatorial Mixing

Introduction

SNIa DDet Resolution

Methods

Evolution

Equatorial Mixing

Introduction

Evolution

Antipodal Behaviour

Methods

Evolution

Yields

Introduction

Methods

Evolution

Yields

Introduction

Methods

Evolution

Introduction

Methods

Evolution

Further work

Yield Distribution

Yield Distribution

SNIa DDet Resolution

Introduction

Methods

Evolution

Introduction

Methods

Evolution

Further work

3D: will it scale?

1D says 1km (Katz 2019ApJ...874..169K) SPH says maybe? (Gronow 2021A&A...649A.155G: 30km resolution with mixed results)

Introduction

Methods

Evolution

Further work

Thank You!

Computational cost

SNIa DDet

Resolution

